Hall	Ticket	Number:	

) f			
1		1 1	1 1	1 1
		1 1		1
	1 1			1 1
 1	1 1	1		

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.C.A. II Year I-Semester Backlog(Old) Examinations, December-2017

Design and Analysis of Algorithms

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Define the time complexity of an algorithm.
- 2. Define hashing.
- 3. Write the control abstraction for divide and conquer.
- 4. Illustrate minimum spanning tree with example.
- 5. Explain the biconnected components.
- 6. Show BFS traversal technique with example.
- 7. Write control abstraction for back tracking.
- 8. Define m-colorability optimization.
- 9. Define Node cover problem.
- 10. Explain the satisfiability problem.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11.	a) List the different asymptotic notations used to represent the time complexity. Explain the same with examples.	[5]
	b) Define Heap. Explain the Heap sort Algorithm.	[5]
12.	a) Write divide and conquer algorithm for quick sort.	[5]
	b) Explain the krushkal's algorithm for finding the Minimum cost spanning tree with example.	[5]
13.	a) Demonstrate the dynamic programming method to solve the 0/1 Knapsack where the capacity m = 6 and weights (2,3,4) and profits(1,2,5).	[6]
	b) Explain about Multistage graph with example.	[4]
14.	a) Write a backtracking algorithm for graph coloring problem.	[5]
	b) Explain how branch and bound applies for 0/1 Knapsack.	[5]
15.	a) State and explain the importance of cook's theorem.	[5]
	b) Prove that CNF Satisfiability reduces to clique decision problem.	[5]
16.	a) Write UNION and FIND algorithms that use weighting rule and collapsing rule respectively for disjoint sets.	[5]
	b) Write an algorithm for job sequencing with deadlines.	[5]
17.	Write short notes on any two of the following:	
	a) Algorithm for OBST.	[5]
	b) Backtracking for Hamiltonian cycles.c) NP Hard and NP complete problems.	[5] [5]
		r~1

ശശങ്ങങ